Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes.

نویسندگان

  • Wan-Ping Shen
  • Jiun-Lin Horng
  • Li-Yih Lin
چکیده

A noninvasive technique, the scanning ion-selective electrode technique (SIET) was applied to measure Na(+) and Cl(-) transport by the yolk-sac skin and individual mitochondrion-rich cells (MRCs) in intact medaka larvae (Oryzias latipes). In seawater (SW)-acclimated larvae, significant outward Na(+) and Cl(-) gradients were measured at the yolk-sac surface, indicating secretions of Na(+) and Cl(-) from the yolk-sac skin. With Na(+) pump immunostaining and microscopic observation, two groups of MRCs were identified on the yolk-sac skin of SW-larvae. These were single MRCs (s-MRCs), which do not have an accompanying accessory cell (AC), and multicellular complex MRCs (mc-MRCs), which usually consist of an MRC and an accompanying AC. The percentage of mc-MRC was ∼60% in 30 parts per thousand of SW, and it decreased with the decrease of external salinity. By serial SIET probing over the surface of the MRCs and adjacent keratinocytes (KCs), significant outward fluxes of Na(+) and Cl(-) were detected at the apical opening (membrane) of mc-MRCs, whereas only outward Cl(-) flux, but not Na(+) flux, was detected at s-MRCs. Treatment with 100 μM ouabain or bumetanide effectively blocked the Na(+) and Cl(-) secretion. Following freshwater (FW) to SW transfer, Na(+) and Cl(-) secretions by the yolk-sac skin were fully developed in 5 h and 2 h, respectively. In contrast, both Na(+) and Cl(-) secretions downregulated rapidly after SW to FW transfer. Sequential probing at individual MRCs found that Na(+) and Cl(-) secretions declined dramatically after SW to FW transfer and Na(+)/Cl(-) uptake was detected at the same s-MRCs and mc-MRCs after 5 h. This study provides evidence demonstrating that ACs are required for Na(+) excretion and MRCs possess a functional plasticity in changing from a Na(+)/Cl(-)-secreting cell to a Na(+)/Cl(-)-absorbing cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression Profiles of Branchial FXYD Proteins in the Brackish Medaka Oryzias dancena: A Potential Saltwater Fish Model for Studies of Osmoregulation

FXYD proteins are novel regulators of Na(+)-K(+)-ATPase (NKA). In fish subjected to salinity challenges, NKA activity in osmoregulatory organs (e.g., gills) is a primary driving force for the many ion transport systems that act in concert to maintain a stable internal environment. Although teleostean FXYD proteins have been identified and investigated, previous studies focused on only a limited...

متن کامل

Medaka Oryzias latipes as a model for hypoosmoregulation of euryhaline fishes

Ž . We examined the hypoosmoregulatory ability of a model fish, medaka Oryzias latipes , in Ž . relation to the gill-chloride cells or mitochondrion-rich MR cells, and to cortisol. When the Ž . Ž . medaka were transferred from freshwater FW to 30‰ seawater SW , muscle water content decreased by 8% after 2 h and normalized within 1 week. Size and density of MR cells in the gill Ž filament increa...

متن کامل

Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater.

In the present study, medaka embryos were exposed to acidified freshwater (pH 5) to investigate the mechanism of acid secretion by mitochondrion-rich (MR) cells in embryonic skin. With double or triple in situ hybridization/immunocytochemistry, the Na(+)/H(+) exchanger 3 (NHE3) and H(+)-ATPase were localized in two distinct subtypes of MR cells. NHE3 was expressed in apical membranes of a major...

متن کامل

Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae.

In this study, a scanning ion-selective electrode technique (SIET) was applied to measure H(+), Na(+), and NH(4)(+) gradients and apparent fluxes at specific cells on the skin of medaka larvae. Na(+) uptake and NH(3)/NH(4)(+) excretion were detected at most mitochondrion-rich cells (MRCs). H(+) probing at MRCs revealed two group of MRCs, i.e., acid-secreting and base-secreting MRCs. Treatment w...

متن کامل

Differential expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater.

Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na(+)/K(+)-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 300 4  شماره 

صفحات  -

تاریخ انتشار 2011